
/

REFINING FUZZY LOGIC CONTROLLERS
WITH MACHINE LEARNING

N94- 32421

Harold R. Berenji - _

Intelligent Inference Systems Corp. ,:_ _J b' 7

AI Research Branch, MS: 269.2 i_) _/(NASA Ames Research Center
Mountain View, CA 94035

berenji@ptolemy.arc.nasa.gov

ABSTRACT

In this paper, we describe GARIC (Generalized Approximate Reasoning-Based Intelligent Control)
architecture which learns from past performance and modifies the labels in the fuzzy rules to improve
performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and
reinforcement learning. This technology can simplify and automate the application of fuzzy logic control
to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and
docking experiments. It has the potential of being applied in other aerospace systems as well as in
consumer products such as appliances, cameras, and cars.

INTRODUCTION

Future generation of intelligent systems are expected to demonstrate a high degree of autonomy in their
operations. For example, the future controllers for the Space Shuttle in-orbit operations should consume

less fuel, be capable of performing more difficult maneuvers and rendezvous missions, and eliminate jet
over-firings which can result in payload contamination. Fuzzy logic control can play an important role in
development of intelligent systems for space applications [4], [6], [7], [8] where the experience of human
experts can be modeled and used.

Fuzzy logic controllers generally use rules containing fuzzy terms such as small, medium, and large which
can be mathematically represented using membership functions. The membership values range between

zero (for non-membership) to one (for full membership). For example, a temperature reading of 85 degrees
may be given a membership value of .9 in a fuzzy set hot.

A difficulty in design of these systems relates to fine-tuning the membership functions of the labels used in
the rules. A few approaches have been recently suggested which use neural networks to define and fine-tune

the membership functions (e.g., [5]). However, these have been mostly off-line and supervised learning
approaches. In [1], [2], [3] the idea of using reinforcement learning for developing fuzzy membership
functions has been proposed and two architectures, ARIC and GARIC, have been developed. After
successful applications of these architectures to cart-pole balancing and truck backing, the performances of

these algorithms in the attitude control and rendezvous docking missions of the Space Shuttle are being
studied [4]. In this paper, we discuss some of the lessons learned in applying the GARIC architecture to a
complex system such as the simulation of in-orbit operation of the Space Shuttle.

THE GARIC ARCHITECTURE

In some sense, GARIC emulates the way that humans learn to become experts in performing a task. For
example, in learning to play tennis, a novice player first learns a number of general rules for playing this

game. These rules may include how to hold the racket, how to move from a place to the next depending on
the location of the opponent and the direction of the ball movement, etc. In GARIC, such a process helps
in the definition of fuzzy control rules. After these general rules, which are approximate by their nature,
have been learned by the novice tennis player, then he or she starts to practice. It can be argued that by
practicing more, the player sharpens his or her skills in order to produce higher reinforcements (i.e., to win

more games). This process in GARIC refers to refining the fuzzy control rules and in particular, changing
the membership functions that are used.
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Figure l: The GARIC Architecture

GARIC is a hybrid architecture for using fuzzy logic control and reinforcement learning. In reinforcement
learning, one assumes that there is no supervisor to critically judge the chosen control action at each time
step. The learning system is told indirectly about the cffect of its chosen control action. GARIC uses
reinforcements from the environment to refine its definition of fuzzy labels globally in all the rules and

allows any type of differentiable membership function to be used in the construction of a fuzzy logic

controller.

The architecture of GARIC is schematically shown in Figure 1. It has three components:

1. The Action Selection Network (ASN) which, given a situation (i.e., a state vector) and by consulting its

fuzzy rules, recommends performing a control action F

2. The Action Evaluation Network (AEN) maps a state vector and a failure signal into a scalar score (V)

which indicates state goodness. This is also used to produce internal reinforcement.

3. The Stochastic Action Modifier (SAM) uscs both F and internal rcinforcemcnt to produce an action F'

which is applied to the plant.

The ensuing state is fed back into the controller, along with a boolean failure signal. Learning occurs by
fine-tuning of the free parameters in the two nctworks : in the AEN, the weights are adjusted; in the ASN,
the parameters describing the fuzzy membership functions change. Further details on GARIC arc described

in [1].
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SPACE SHUTTLE IN-ORBIT OPERATION WITH GARIC

The attitude and translational control are important parts of the Space Shuttle in-orbit operations. The
attitude controller performs a variety of tasks including:

(1) attitude hold or maintaining the desired attitude within a small region of the desired value, typically
known as a deadband

(2) attitude maneuver or going from one attitude to another.

Typical controllers based on the phase plane concept have angle errors and rate errors as input values. The
output controller value is a command for generating a correcting torque. For the space shuttle, the

rotational corrective torques are generated by thrusters by having compensating thrusters fire along a given
axis to nullify the input errors. It uses two types of thrusters (two levels of jet thrusts), known as primary
and vernier, and operates with two different sets of deadband values. It can perform rate maneuvers in pulse
as well as discrete modes. Typical perturbations acting on the system include gravity gradient, aerodynamic
torques, and translational burns.

The translational controller also performs a variety of tasks including the R-bar or V-bar approaches (in

which the Orbiter moves along the target's radius vector or velocity vector, respectively, with a sequence of
"hops"), station-keeping, and flyaround operations. All testing and training is performed using the Orbital

Operation Simulator (OOS) which is a high fidelity shuttle simulator and includes the space shuttle Digital
Auto-Pilot (DAP) for attitude operation.

A fuzzy logic controller using 31 rules for each axis (pitch, roll, yaw) have been developed [7], [4]. For
each rule, seven labels (Negative-Big, Negative-Medium, Negative-Small, Zero, Positive-Small, Positive-
Medium, Positive-Big) are used for angle error and angle error rate, and five labels (NM, NS, ZE, PS, PM)

are used for jet firing commands. This controller holds the error between a .5 deadband. If a tighter
deadband is required, then the membership functions need to be adjusted manually. However, by using the
GARIC architecture, the system learns to automatically adjust its membership functions so that the error

remains within the new tighter deadband. In a learning experiment, a failure occurs when the value of a

state variable goes beyond the desired deadband. Over a number of trials, and by using the fuzzy
reinforcement learning, the GARIC architecture learns to control the error to stay within the new deadband.

Similar experiments were also performed for translational control including the R-bar approach, V-bar
approach, and fly-around operations.

A set of experiments were performed to tune our fuzzy logic controller to perform a new task of keeping the
error within a .4 deadband (i.e., -.4 to +.4) for pitch, roll, and yaw. Less than 10 trials were needed to refine

the triangular membership functions as used in our fuzzy rules. Once GARIC has completed its training,
we take the refined labels and run the controller again with no on-line learning in order to test its behavior.
These experiments showed that GARIC can learn to perform a new task within a limited number of trials in
a complex environment such as the simulation of the Space Shuttle in-orbit operations. Further details
about these experiments can be found in [4].

Since it is relatively simple to translate a fuzzy rule base into a 5-layer neural network as is used in ASN,
then it is expected that GARIC can be applied to other domains where fuzzy logic control has been used.

For example, fuzzy logic control based applications in consumer products such as appliances, automobiles,
and cameras can use GARIC's method in fine-tuning their performances.

CONCLUSION

GARIC provides a general approach for developing intelligent systems. It starts with the available prior
knowledge of the experts in the form of fuzzy rules and refines it using the reinforcements obtained while

experimenting with the system. As such, this approach generalizes fuzzy logic control and adds an adaptive
behavior to it. In this paper, we briefly discussed an application of GARIC in in-orbit operations of the

Space Shuttle. However, a general learning technique as developed in GARIC, may be used in many other
domains that fuzzy logic control can be Used.
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